Young stellar system caught in the act of forming close multiples

Eso_potw1644a_1024

eso_potw1644a October 31st, 2016

Credit: ALMA (ESO/NAOJ/NRAO)/J.J. Tobin (University of Oklahoma/Leiden University)

For the first time, astronomers have seen a dusty disc of material around a young star fragmenting into a multiple star system. This image comprises new observations from the Atacama Large Millimeter/submillimeter Array (ALMA), Chile, and reveals the process in action! Stars form in cosmic clouds of gas and dust, when the thin material in the clouds collapses gravitationally into denser cores that in turn draw additional material inward. The infalling material forms a rotating disc around the young star, and is slowly consumed. Eventually, the young star gathers enough mass to create the necessary temperatures and pressures at its centre to trigger nuclear fusion. Stars that have no companion — such as the Sun — are not as common as we once thought. In fact, almost half of the stars in our galaxy have at least one companion, and some are more sociable still! Previous studies have indicated that the stars in multiple systems tend to be either relatively close to each other, within about 500 times the Earth-Sun distance (known as an Astronomical Unit or AU), or significantly further apart, at over 1000 AU. Given these wildly different distances, scientists concluded that there were two main mechanisms producing multiple star systems — either the original cloud collapsed unstably and fragmented, each subsequent fragment crumpling to form a new star, or the rotating disc around an existing star fragmented, with the same result. Systems with larger separations likely formed via the former process (as recent observational studies have suggested), and closer-knit stellar families via the latter (although there was limited evidence of this process). New data from ALMA have now offered observational evidence of this conclusion. This image shows the second process in action, as seen in the young triple star system L1448 IRS3B. The trio are still deeply embedded within their parent cloud in the constellation of Perseus, some 750 light-years from Earth, and are hungrily feeding from material in the surrounding disc. ALMA has revealed this disc to have a spiral structure, a feature that indicates gravitational instability. Notes: The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI). Links Associated paper: “A triple protostar system formed via fragmentation of a gravitationally unstable disk”, by J. Tobin et al., is published in the 27 October issue of the journal Nature. NRAO press release

Provider: European Southern Observatory

Image Source: https://www.eso.org/public/images/potw1644a/

Curator: European Southern Observatory, Garching bei München, Germany

Image Use Policy: Creative Commons Attribution 4.0 International License

Download Options Download Options

Image Details Image Details

Image Type
Observation
Object Name
[BC86b] LDN 1448 IRS 3B L1448 IRS3B
Subject - Milky Way
Star > Evolutionary Stage > Protostar
Star > Grouping > Multiple
Eso_potw1644a_128
 

Position Details Position Details

Position (ICRS)
RA = 3h 25m 36.4s
DEC = 30° 45’ 14.9”
Orientation
North is up
Field of View
0.1 x 0.1 arcminutes
Constellation
Aries

Color Mapping Details Color Mapping

  Telescope Spectral Band Wavelength
Orange ALMA (None) Millimeter 1.5 mm
Spectrum_ir1
Orange
Eso_potw1644a_1280
×
ID
potw1644a
Subject Category
B.3.1.1   B.3.6.3  
Subject Name
[BC86b] LDN 1448 IRS 3B, L1448 IRS3B
Credits
ALMA (ESO/NAOJ/NRAO)/J.J. Tobin (University of Oklahoma/Leiden University)
Release Date
2016-10-31T06:00:00
Lightyears
Redshift
Reference Url
https://www.eso.org/public/images/potw1644a/
Type
Observation
Image Quality
Distance Notes
From paper
Facility
Atacama Large Millimeter/submillimeter Array
Instrument
None
Color Assignment
Orange
Band
Millimeter
Bandpass
Central Wavelength
1500000
Start Time
Integration Time
Dataset ID
Notes
Coordinate Frame
ICRS
Equinox
J2000
Reference Value
51.4015069884, 30.7541452034
Reference Dimension
1200.0, 1204.0
Reference Pixel
600.0, 602.0
Scale
-9.5547077813e-07, 9.5547077813e-07
Rotation
-0
Coordinate System Projection:
TAN
Quality
Full
FITS Header
Notes
Creator (Curator)
European Southern Observatory
URL
http://www.eso.org
Name
Email
Telephone
Address
Karl-Schwarzschild-Strasse 2
City
Garching bei München
State/Province
Postal Code
D-85748
Country
Germany
Rights
Creative Commons Attribution 4.0 International License
Publisher
European Southern Observatory
Publisher ID
eso
Resource ID
potw1644a
Metadata Date
2023-10-11T09:20:57.550238
Metadata Version
1.1
×

 

Detailed color mapping information coming soon...

×

There is no distance meta data in this image.

 

Providers | Sign In